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Abstract – We develop wireless sensor network, control 
system, and data analysis technologies for dynamic and 
near-real-time validation of space-borne soil moisture 
measurements, in particular those from the Soil Moisture 
Active and Passive (SMAP) mission. Soil moisture fields are 
functions of variables that change over time across the range 
of scales from a few meters to several kilometers. We 
develop sensor placement policies based on spatial statistics 
of soil moisture, and for each location, develop dynamic 
scheduling policies based on physical models of soil 
moisture temporal dynamics and microwave sensor models 
for heterogeneous landscapes. Furthermore, we relate the 
ground-based estimates of the true mean to the space-based 
estimates through a physics-based landscape simulator and 
statistical aggregation procedure. An energy-efficient 
integrated communication and actuation platform is 
developed and used to command the sensors and transmit 
their data to a base station in near-real time. Full-scale field 
experiments were initiated in August 2010 with the 
deployment of the first full-scale wireless sensor network in 
Canton, Oklahoma, using our custom-built Ripple-1 
architecture. This paper summarizes the results of the field 
deployment, status of the landscape simulator, and plans for 
the next set of deployments using the next generation 
network architecture and nodes, called Ripple-2. 
 

I. INTRODUCTION 
 
This project seeks to develop technologies for near real-time 
validation of space-borne soil moisture estimates, and in 
particular those derived from the Soil Moisture Active and 

Passive (SMAP) mission [1]. Soil moisture fields possess 
complex dynamics on multiple spatial and temporal scales. 
Furthermore, within the coarse resolution cells of SMAP 
(O(km2) to O(10km2)) observed landscapes could exhibit 
significant heterogeneity [2-3]. Therefore, a traditional 
spatially uniform and temporally sparse sampling scheme is 
inadequate for SMAP product validation. Instead, a ground 
network of sensors needs to be designed that optimally 
captures the statistics of the soil moisture fields in space and 
time, and relates them to the aggregate space-based 
estimates. We leverage our previous work on soil moisture 
sensor scheduling [4-5] to solve the joint problems of 
optimum sensor placement and sensor scheduling for 
obtaining the true mean of soil moisture fields subject to 
accuracy and cost constraints. We further relate the ground-
based estimates of the true mean of soil moisture to the 
space-based estimates through a physics-based statistical 
aggregation procedure. Full-scale field experiments 
prototype the system using ground sensors and radar data. 

We develop the spatial placement design, wireless 
communication system, and dynamic operation rules for soil 
moisture stations that provide estimates that are near-real-
time, autonomously operated (hence can operate over 
extended times), and are compatible with SMAP data 
products. The sensors will communicate with a coordinator, 
and actuate measurements only when their measurement 
significantly adds value to the across-network computation 
of the field mean. The principal technology innovations that 
make this possible are: 

• optimal design of sensor node placement and 
scheduling based on modeled soil moisture spatial 
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statistics, and joint placement, scheduling and mean 
estimation 

• strategies for deriving large-scale space-based 
estimates of heterogeneous soil moisture that are 
compatible with ground-based estimates of true 
mean of soil moisture fields  

• wireless communication protocols and actuation 
systems that configure the sampling within the 
network to yield large-scale field mean conditions.  

Upon successful completion of the baseline project in 2012, 
the technology readiness level (TRL) is expected to be at 6, 
on-track for integration into an operational scenario for 
SMAP by the time it launches in 2014-2015 time frame. 
This paper describes the highlights of the second year of this 
project in the following areas:  
1. Deployment of first full-scale network in Canton, OK 
2. Remote sensor and hydrologic landscape simulators 
3. Joint scheduling and estimation of field mean, with 

sensors that could be faulty 
 

II. DEPLOYMENT OF THE FIRST FULL-SCALE NETWORK IN 
CANTON, OK 

 
During the second year of this project, our remote sensing 
validation framework through optimal placement and 
scheduling of in-situ sensors was demonstrated through 
extensive laboratory and field experiments.  Specifically, we 
successfully accomplished the following tasks: (1) the full-
scale deployment, testing, and maintenance of our Ripple-1 
system on a cattle farm in Canton, Oklahoma; (2) the 
construction of a near real-time data logging and online 
display system; (3) the design and development of the next 
generation Ripple-2 system.  Details follow. 
 
Deployment of Ripple-1 network in Canton, OK 
A conceptual and architectural depiction of the Ripple data 
collection system is illustrated in the Figure 1. The system 
consists of a field element and a remote element.  A wireless 
sensor network is deployed over a target field, along with a 
base station that performs data collection and sensing 
control, and a database collocated with the base station for 
local data storage.  At each sensing site (where a sensor node 
is placed), 3 moisture sensors are deployed at different 
depths with wire connection to the sensor node on the 
ground.  The base station receives sensing data from each 
sensor node, but can also control the sensor measurement 
schedules on demand.  It also periodically (every half an 
hour) uploads the collected sensor data through a 3G 
connection to a database server located in our lab in the 
EECS building on the campus of U. Michigan, which then 
displayed on our project webpage at 
http://.soilscape.eecs.umich located on a department web 
server.  The collected data, in both its raw and processed 
form can be downloaded in batches from the website; the 
calibration process and instructions are also available on the 
site. The database server and web server constitute the 
remote element of the architecture.  
 

 
Figure 1. Global architecture of the Ripple wireless sensor network 
system 

 
Figure 2. Ripple-1 end device 

The Ripple-1 (Figure 2) system [4] is built using the 
ZigBee (IEEE 802.15.4 plus higher layer specifications) 
standard.  We chose ZigBee as it allows the formation and 
self-configuration of a multi-hop network, which can 
potentially provide us with a desirable coverage. In addition, 
ZigBee is a relatively mature technology with many 
products on the market to choose from, which can 
significantly shorten our development and production cycle.  
The disadvantage with this choice is that a router node under 
the ZigBee specification cannot be put to sleep mode, which 
means it will consume significantly more energy and will 
require larger batteries and larger solar panels.  For the end 
device (ED) we chose to use the Xbee Pro SOC as both the 
MCU and radio. It provides a fairly long range (up to 500 
meters in field tests), and has generally low power 
consumption (295mA at 3.3V in transmission mode, 45mA 
at 3.3V in receive mode and less than 10 uA in sleep mode).  
On the other hand this chip almost completely encapsulates 
the implementation of the ZigBee protocol suite, leaving 
very limited room for reconfiguration and customization.  

Our initial deployment occurred in August 2010 on a 
cattle farm in Canton, Oklahoma. Figure 3 (a) shows a 
satellite map of the target field with four major soil types.  

 
Figure 3 (a). Google-Earth satellite view of the Canton, OK site, with 
the 4 prominent soil textures 
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Figure 3 (b). Deployed network at canton, OK, showing the locations 
of sensor nodes (red circles), routers (red squares), and base station 
(red cross). 
 

Figure 3(b) illustrates the deployment at a glance: we 
deployed 1 base station/coordinator, 3 router nodes, and 21 
sensor nodes/end devices, each with 3 Decagon ECHO 
probes attached at depths 4cm, 13cm, and 30cm. 

During the testing and operation of the above field 
deployment we encountered the following technical 
problems. The network was not very stable: there are 
disruptions to normal behavior during which the system 
suffers from significant data loss. Our initial diagnosis was 
that the quality of the router-base station connection was 
unstable, causing end devices to switch parent-child 
association. This switching took a long time to complete due 
to the low duty cycle of the end device, as well as the low 
refreshing rate of the child-tables on the routers.  Secondly, 
the 3G connection was also found to be unstable, and the 3G 
card interface failed regularly.   

To fix the above problems we took a second trip in 
early September 2010, during which we automated all 
operations on the base station, including system restart, 
machine reboot and 3G connection restart.  We also installed 
two more routers to improve the quality of the connection to 
the base station, but we had to remove one of the original 
routers due to battery heat damage. We saw significant data 
quality improvement following this maintenance trip.   

However, later in September 2010 our battery backup 
died and the system had to be shut down. Then in October 
the sensor nodes in the field sustained significant damage 
from both weather and cattle. We took a third trip in late 
November 2010 to assess the damage and perform repair.  
We replaced the original desktop (which served as the base 
station) with a Netbook, removing the need for a battery 
backup. We repaired solar panel connections on many sensor 
nodes and overall recovered about 10 nodes. But the 
remaining two original routers were deemed beyond repair 
and decommissioned. We have continued to receive data but 
the system has not been as stable as before.   
 
Design and development of Ripple-2 
Building on the experience and lessons learned in the 
deployment, operation and maintenance of Ripple-1, we 
started to design an improved, second generation system 
Ripple-2 during the second half of Year 2. This new system 
adopts a two-tiered hierarchy: the lower layer consists of a 

local coordinator (LC) node and multiple sensor nodes or 
end devices (ED) associated with the LC node. The upper 
layer consists of LC node(s) and a base station. The LC node 
may be equipped with two radio interfaces, allowing it to 
communicate within the two layers using different radio 
technologies, effectively rendering the two layers logically 
separate.  The lower layer uses the IEEE 802.15.4 standard 
but not the ZigBee suite (i.e., we do not use the ZigBee 
MAC and network layers). The advantages of this design 
include: (1) flexibility in developing our own protocol on top 
of 802.15.4 for the lower layer and multiple candidate 
solutions for the upper layer; (2) the logical separation 
between the two layers makes the sleep scheduling of the 
ED nodes much easier to control; (3) a different radio 
solution for the upper layer can allow the system to span 
over much longer distances; and (4) this system architecture 
can be easily scaled up. We are currently in the process of 
upgrading the Canton site to Ripple-2.  
 
Near real-time data upload and online display  
The Ripple-1 system uses a 3G connection to periodically 
(every half an hour) upload soil moisture data to a database 
server located in our lab. Upon storage the raw data gets 
converted through a customized calibration process, the 
result of which can be queried, displayed/visualized, and 
cross-compared on our project webpage. The collected data, 
in both its raw and processed form can be batch-downloaded 
from the website; the calibration process and instructions are 
also available on the site. An example of the web display is 
shown in Figure 4 below. 
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Figure  4.  SoilSCAPE webpage display and interactive data query  
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We are currently focusing on three tasks. The first is the 
continued maintenance and upgrade of the Canton, OK, site.  
The second is a 30-node Ripple-2 deployment at the 
University of Michigan Matthaei Botanical Gardens (our 
“Laboratory environment,” which is scheduled for June 
2011.  The third is an augmentation of the current project to 
install a large Ripple-2 network on the Tonzi Ranch, CA, 
starting late summer/early fall of 2011.  

 

III. LANDSCAPE SIMULATOR AND MATCHING IN-SITU AND 
SATELLITE-BASED SOIL MOISTURE RETRIEVALS 

 
The problem of designing a ground network that will 
properly sample the soil moisture field in space and time to 
produce an accurate estimate of its true mean has been 
discussed already. In this section, we discuss the 
complementary mean estimation “aggregation” problem 
from the point of view of the satellite. The two values of the 
soil moisture field mean, one obtained from the satellite and 
the other from the ground sensors, must be compatible for 
the validation scenario to be successful. Regardless of the 
accuracy of the radar and radiometer retrieval algorithms, 
the mean value of soil moisture obtained from satellite data 
is not necessarily the same as the true mean as estimated 
from the ground sensors. A physics-based spatial 
aggregation strategy has to be developed to correlate in-situ 
and space-based estimates of soil moisture.  

In the second year of the project the proof-of-concept 
heterogeneous landscape simulator was improved to more 
accurately investigate aggregation strategies. Two simulators 
have been investigated: (1) a land surface hydrology 
simulator MOBIDIC (Modello Bilancio Idrologico 
DIstributo e Continuo (fully distributed raster-based 
hydrologic model)) and (2) remote sensor (radar) 
backscattering cross section simulator.  

In the following, we discuss the progress on each 
simulator. The emphasis has been to generate simulation 
results from these models for the Canton, OK field site. 
 
Land Surface Hydrology Simulator (MOBIDIC): 
 
We had initially used the tRIBS model [6-7]. More recently, 
we have switched to the MOBIDIC model, also developed 
partially at MIT. The MOBIDIC model was used for 
simulation of hourly soil moisture (with uncalibrated 
MOBIDIC model) for 1-year (2007), 5-year (2005-10), and 
9-month (8/1/2010-3/11/2011) windows for the Canton site. 
Several data layers needed to set up the model were 
collected from publicly available resources. The following 
figures (Figures 5-8) show highlights of the simulations. The 
catchment area modeled is larger than the wireless sensor 
field, to capture the pertinent hydrologic effects. 
 

 
Figure 5. Simulation domain for MOBIDIC, showing the location of the 
pourpoint on top right. The blue dots show the locations of the 
SoilSCAPE sensor nodes. 

 
The simulations are done based on best available 

resolution available from the base data (10m DEM from 
USGS, for example). 
 

 
Figure 6. Soil maps from SURRGO, shown underneath the locations 
of the sensor nodes. 

 
Figure 7. MOBIDIC sample outputs: (top) rainfall records and (bottom) 
soil moisture. 
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Figure 8. MOBIDIC sample outputs: Daily aggregated volumetric soil 
moisture starting August 12, 2010. 
 
Radar Simulator: 
This landscape simulator is based on a unified multi-layered 
multi-species model adaptable to various landcover types 
[8]. A land cover classification scheme for the United States 
is readily available through the National Land Cover 
Database (NLCD) and a data-base of input files for the 
unified model using these land cover types has been created. 
The different aggregation strategies can then be visualized in 
Google Earth where layers of information are co-registered 
on the whole Earth. More details on this simulator can be 
found in [9]. 

 
 
Figure 9. Canton in Oklahoma, a study site whose landscape data 
layers were created, co-registered, and ingested using Google Earth. 
 
The Canton, Oklahoma (at 36° 0' 2.05" N, 98° 37' 58.55" W) 
site is a rather homogeneous grassland area with a sparse 
tree line between the grassland and the property owner’s 
house located on the far west end of the private property. 
The topography is smooth with a drainage channel on the 
east side and a raising slope towards the west. The Canton 
location with respect to Oklahoma City is seen in Figure 9. 

Using available data layers such as soil type maps 
and in-situ soil probe analysis over the extent of the Canton 
site, each soil area is assigned a specific soil type 
characterized by the percentage of sand (S), clay (C) and 
bulk density (Rb). This is shown in Figure 10. 

With this basic information, several sample setups 
are created to investigate forward modeling. Three setups are 
first simulated and can be seen in Figure 11. The top row 
shows the case where different land cover types are taken 
into account (according to NLCD 2006; grass (beige), crop 
(brown), developed open space (light red) and some forest 
(green) and shrub (light brown)), different soil types 
according to Table 1 and uniform soil moisture of 4 percent 
is assumed over the whole scene. The second example setup 
(in the middle row of Figure 11) shows the same scene with 

the same landcover and soil types, but with a more realistic 
soil moisture (SM) distribution (“Loamy sand” with 10% 
SM, “Sandy loam” with 20% SM, “Sandy” with 5% SM, 
“Sandy clay loam” with 30% SM). The third example setup 
(in the bottom row of Figure 11) uses the same parameters as 
the second setup, but adds a 10 percent slope for the “Loamy 
sand” type. The simulated radar backscatter coefficients over 
the scene are vastly different from each other, which makes 
the point that physics-based modeling is essential. Several 
other cases where also simulated but are not shown here for 
brevity. 
 

Table 1. Assumed soil types for regions shown in Figure 10. 
# 0: loamy sand S = 83.05%   C =   6.99%   Rb = 1.64 g/cm3
# 1: sandy loam S = 70.33%   C = 11.85%   Rb = 1.54 g/cm3
# 2: sandy S = 91.92%   C =   2.43%   Rb = 1.50 g/cm3
# 3: sandy loam S = 70.33%   C = 11.85%   Rb = 1.54 g/cm3
# 4: sandy clay loam S = 60.77%   C = 26.75%   Rb = 1.40 g/cm3

# 1

# 2

# 3

# 4

# 0

# 0

# 4

# 0

# 1

 
Figure 10. Maps showing NLCD 2006 over Canton site with overlay of 
soil type map and respective soil type. 

  

  

  
Figure 11. Radar backscatter coefficient in dB for L-band in HH (left) 
and VV (right) polarization over Canton site; uniform soil moisture of 
4 % (top row), realistic artificial soil moisture distribution (middle 
row), realistic artificial soil moisture distribution with slope of 10 
degrees in “loamy sand” type. 

For a more thorough analysis, the simulated area has been 
expanded to an area of about 1.5km x 1.5km as can be seen 
in the Google Earth image in Figure 12, coinciding with 
large parts of the MOBIDIC land surface hydrology 
simulator. An uniform soil moisture of 4 percent is assumed 
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over the whole area. The same aggregation study is shown 
for this scene and can be seen in Figure 13. 
 

1.5 km

1.5 km

Canton Test Site

 
Figure 12. Google Earth image of extended simulation area. 

Assuming that a satellite like SMAP will only see 
one radar backscattering coefficient for the whole scene, as 
shown in Figure 13 (bottom row), a retrieval based on a land 
cover type assumption can be done. This means that it is 
explicitly assumed that the whole scene has the same land 
cover and soil type, based on which the soil moisture can be 
retrieved. The results for such a scenario are given in Table 
2. It is shown that the soil moisture retrieval based on the 
assumption of a homogeneous scene can produce erroneous 
results. As a reminder, the soil moisture was assumed to be 
uniform over the whole scene as 4 percent, and only the land 
cover and soil type were changed. Generally, retrievals using 
only HH polarization alone lead to overestimation while 
retrievals using only VV lead to underestimation. For the 
case of the deciduous forest, the soil moisture is not 
retrievable. This is due to the dominant volume scattering of 
the branches. In general it may be possible to retrieve soil 
moisture underneath a forest with radar observations at L-
band, given that proper assumptions can be made about the 
scene, which is not the case in this scenario. 

Currently we are using the radar landscape 
simulator in full-blown aggregation and disaggregation 
studies for the Canton site as well as the Michigan Matthaei 
botanical gardens. At Matthaei, we also plan to deploy the 
tower radar as a surrogate for the “remote sensor” and 
therefore to perform scaled versions of the 
aggregation/disaggregation tests. The tower radar may also 
be deployed at the Canton site. 

 

IV. PLACEMENT AND SCHEDULING WITH SENSOR FAILURES 
 
In the first year of the project, we had developed sensor 
placement strategies through the following tasks: 

• Developed empirical sensor placement strategies 
assuming continuous sampling (Conducted studied 
on simulated data representing soil moisture 
dynamics in time for a 3D field; Developed a 
cluster based placement scheme) 

• Investigated field mean estimation problem 
assuming a fixed placement (With a fixed 
placement, computed scheduling policies for 
sensors; Modified the estimation policy to estimate 

the mean value of soil moisture over the field of 
interest) 

• Developed a methodology to address the joint 
placement and scheduling problem (Optimal 
placements should take into account the dynamic 
scheduling costs; Identified a methodology that 
incorporates the dynamic aspects of scheduling into 
the static placement problem)  

 
 

-30 dB

-10 dB

-20 dB

-30 dB

-10 dB

-20 dB

 

-30 dB

-10 dB

-20 dB

-30 dB

-10 dB

-20 dB

 

-30 dB

-10 dB

-20 dB

-30 dB

-10 dB

-20 dB

 

-30 dB

-10 dB

-20 dB

-30 dB

-10 dB

-20 dB

 
Figure 13. Radar backscatter coefficient in dB for L-band in HH (left) 
and VV (right) polarization; blocks containing 1 x 1 pixel (top), blocks 
containing 4 x 4 pixels (second row), blocks containing 8 x 8 pixels 
(third row), block containing average of all pixels (bottom). 

Table 2: Retrieval of soil moisture based on land cover and soil type 
assumption. 

Land cover type Soil type Polarization Soil moisture (in percent)

Grassland Loamy sand HH 14

Grassland Loamy sand VV 2.8

Grassland Sandy loam HH 16

Grassland Sandy loam VV 3.8

Grassland Sandy HH 14

Grassland Sandy VV 2.5

Grassland Sandy clay loam HH 18

Grassland Sandy clay loam VV 4.5

Crop Loamy sand HH 10

Crop Loamy sand VV 3

Deciduous forest Loamy sand HH N/A

Deciduous forest Loamy sand VV N/A  
 

In Year 2 of the project, we have advanced the placement 
analysis in several ways:  

• Initial formulation and studies on the placement 
problem with sensor failures (Evaluation of 
placements under random sensor failures; A 
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heuristic modification of the placement algorithm 
to address possibility of sensor failures) 

• Performance evaluation of sensor scheduling and 
estimation methodologies on the new hydrologic 
land surface model MOBIDIC data for Canton site 

• Explored methodologies to address the coupled 
placement and scheduling problem (Ideally, 
optimal placements should take into account the 
dynamic scheduling costs; Can we classify 
locations into groups/clusters with similar dynamic 
costs and solve a separate placement problem for 
each cluster?) 

 
Evaluating sensor placements with random sensor failures 
Sensors may fail due to hardware or software failures. In our 
approach, we assume that: sensor failures are observable and 
permanent; and within one time period (say 1 day), a sensor 
may fail with probability p. We would like to evaluate the 
performance of different sensor placements determined by 
different placement algorithms under the above assumptions 
about sensor failures.  
 We investigated two placement strategies using 
simulated soil moisture evolution data, the uniform 
placement strategy and the greedy strategy. The former 
strategy places sensors uniformly over the field of interest. 
We used the minimum MSE version of the greedy algorithm 
to find another sensor placement. We simulated sensor 
failures over time and calculated the accumulated estimation 
error under these two placements. Figure 14 shows the 
estimation errors under the two placements with different 
probabilities of sensor failures over a period of 3600 hours. 
 The sharp increase in the accumulated estimation 
error when the probability of sensor failure exceeds 0.001 is 
due to the following fact: almost all sensors fail over the 
period of 3600 hours and the accumulated estimation errors 
then is due to predictions and not actual measurements. 
 
Mean estimation: dynamic scheduling and fixed placement 
In our earlier project AIST-05, we investigated the problem 
of dynamic scheduling and estimation of soil moisture at 
multiple locations. We computed independent scheduling 
policies for each sensor location and a joint estimation 
policy that uses the joint statistics and measurements from 
all locations to come up with soil moisture estimates for all 
locations. The ultimate objective of the sensor network is to 
estimate the temporal evolution of the mean value of soil 
moisture over a field of interest using sensors placed at only 
a subset of all locations in the field. Moreover, this 
estimation should be done in an energy efficient manner by 
dynamically scheduling measurements at each sensor.  
 From our studies in the earlier project, we concluded 
that the joint scheduling problem for all sensors is 
computationally infeasible for practical networks. This 
prompted the independent scheduling architecture where 
each sensor’s scheduling policy is determined independently 
of other sensors using only the local statistics. The dynamic 
scheduling policy for a sensor selects the timing of 
measurements based on the statistical information and the 
past available measurements from that location alone. The 

algorithms developed in AIST-05 solve the problem of 
finding these scheduling policies. While each sensor is 
scheduled independently, the estimation of soil moisture at a 
location can use past measurements made at other locations 
because of the correlations among soil moisture at different 
locations. The estimation policy in AIST-05 exploits the 
correlations across sensors and uses past measurements from 
all sensors to estimate soil moisture at each sensor.  

 
 
Figure 14. Comparison of two placements under sensor failures 
 

In Year I of the current project, we built on our 
previous solutions to address the mean estimation problem. 
Specifically, we used the algorithms of AIST-05 to find the 
scheduling policy for each sensor location and the estimates 
of soil moistures at each sensor’s location. We developed a 
joint statistical model (a joint probability mass function Q) 
of the mean and the moisture values at each sensor location 
using simulated data from a hypothetical location and a 
specified placement. We first used the estimation policy 
from the AIST-05 project that at each time produces 
estimates of the soil moisture at each location. We treated 
these estimates as true values of the moisture and used the 
statistical model Q to estimate the field mean.  

In Year 2, we applied the above methodology to the 
MOBIDIC data for the Canton site. We used simulated data 
for the Canton site where 21 sensors were placed in Aug. 
2010. The data was simulated for a period of six months at 
hourly time resolution. Thus, a total of 5260 snapshots of 
soil moisture values for the Canton site were used in our 
experiments. About half of these data points were used to 
learn spatial and temporal statistics of soil moisture. The 
remaining snapshots were used as test data to evaluate the 
performance of the scheduling and estimation methodology 
described above.  Figure 15 presents a realization of the true 
mean and estimated mean of the soil moisture over the field.  

 
Figure 15. Comparison of the true value of mean soil moisture and 
the estimate. 
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The joint scheduling and placement problem 
Under the dynamic scheduling policy, a sensor location 

is not sampled at every time instant. At the instants when a 
sensor location is not sampled, the moisture value at that 
sensor location may have to be estimated from past 
measurements and measurements of other sensors. A sensor 
placement calculated under the assumption of continuous 
sampling may choose sensor locations that have high 
estimation errors between the true moisture value at that 
location and the local estimate. Also, not all sensor locations 
incur the same measurement cost under dynamic scheduling. 
Thus, a solution calculated under continuous sampling may 
select sensor locations with high measurement costs.  

To address the overall optimization problem, we need 
to incorporate the dynamic costs of scheduling and 
estimation into the sensor placement objective. Given the 
combinatorial nature of the problem and the difficulty of 
evaluating the dynamic costs of each placement, we 
developed a methodology that approximates the dynamic 
costs of selecting a placement through a 3-step approach 
(classification, independent scheduling and estimation 
representative within each class, and placement based on 
suitable optimization criteria). Unlike the actual costs, which 
are hard to evaluate, these costs can be evaluated easily and 
incorporated into the placement objective. This approach is 
currently under evaluation and its results will be reported in 
our future work.  
 

V. CONCLUSIONS 
 
We are developing technologies for the long-standing 
problem of validation of large-footprint satellite-derived 
estimates of soil moisture, with specific application to the 
SMAP mission. We develop the spatial placement design, 
wireless communication system, and dynamic operation 
policies for soil moisture in-situ sensors that provide 
estimates that are near-real-time, autonomously operated, 
and are compatible with SMAP data products. In the second 
year of the project, we have made advances in the areas of 
wireless sensor network architecture (deployed the first full-
scale wireless network in Canton, Oklahoma, and based on 
its lessons learned, developed new efficient architecture for a 
scalable dense network), made major enhancements to radar 
and hydrology land surface models and performed extensive 
simulations for the sensor network field site, developed 
strategies for sensor placement taking into account the 
probability of sensor failures, developed strategies for mean 
field estimation using a sparse set of measurements over a 
heterogeneous field, and made formal connections to the 
SMAP mission through becoming a Core Cal/Val Site for 
SMAP. The latter is in large due to recent plans to install a 
large (150-node, 500-sensor) network. The technology 
readiness level (TRL) had an entry level of 2 was advanced 
to 3 in the first year. In year 2, various parts of the project 
are at TRLs of 3 to 5. 
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